当前,大型语言模型(LLM)在推理任务上表现出令人惊艳的能力,特别是在给出一些样例和中间步骤时。然而,prompt 方法往往依赖于 LLM 中的隐性知识,当隐性知识存在错误或者与任务不一致时,LLM 就会给出错误的回答。
机器之心 · 2023-10-16 14:26:00
近年来,一些端到端学习方法被提出以增强六自由度物体定位的鲁棒性,包括:直接回归几何参数;采用渲染 - 比对来迭代地优化位姿。
机器之心 · 2023-10-16 11:56:00